Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
نویسندگان
چکیده
Transition metal oxides that mix electronic and ionic conductivity are essential active components of many electrochemical charge-storage devices, ranging from primary alkaline cells to more advanced rechargeable Li-ion batteries. In these devices, charge storage occurs via cation-insertion/deinsertion mechanisms in conjunction with the reduction/oxidation of metal sites in the oxide. Batteries that incorporate such metal oxides are typically designed for high specific energy, but not necessarily for high specific power. Electrochemical capacitors (ECs), which are typically composed of symmetric high-surface-area carbon electrodes that store charge via double-layer capacitance, deliver their energy in time scales of seconds, but at much lower specific energy than batteries. The fast, reversible faradaic reactions (typically described as "pseudocapacitance") of particular nanoscale metal oxides (e.g., ruthenium and manganese oxides) provide a strategy for bridging the power/energy performance gap between batteries and conventional ECs. These processes enhance charge-storage capacity to boost specific energy, while maintaining the few-second timescale of the charge-discharge response of carbon-based ECs. In this Account, we describe three examples of redox-based deposition of EC-relevant metal oxides (MnO2, FeOx, and RuO2) and discuss their potential deployment in next-generation ECs that use aqueous electrolytes. To extract the maximum pseudocapacitance functionality of metal oxides, one must carefully consider how they are synthesized and subsequently integrated into practical electrode structures. Expressing the metal oxide in a nanoscale form often enhances electrochemical utilization (maximizing specific capacitance) and facilitates high-rate operation for both charge and discharge. The "wiring" of the metal oxide, in terms of both electron and ion transport, when fabricated into a practical electrode architecture, is also a critical design parameter for achieving characteristic EC charge-discharge timescales. For example, conductive carbon must often be combined with the poorly conductive metal oxides to provide long-range electron pathways through the electrode. However, the ad hoc mixing of discrete carbon and oxide powders into composite electrodes may not support optimal utilization or rate performance. As an alternative, nanoscale metal oxides of interest for ECs can be synthesized directly on the surfaces of nanostructured carbons, with the carbon surface acting as a sacrificial reductant when exposed to a solution-phase, oxidizing precursor of the desired metal oxide (e.g., MnO4(-) for MnO2). These redox deposition methods can be applied to advanced carbon nanoarchitectures with well-designed pore structures. These architectures promote effective electrolyte infiltration and ion transport to the nanoscale metal oxide domains within the electrode architecture, which further enhances high-rate operation.
منابع مشابه
Nanostructured Electrode Materials for Electrochemical Capacitor Applications
The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric d...
متن کاملMaterials for electrochemical capacitors.
Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved thro...
متن کاملUnderstanding and Controlling Anionic Electrochemical Activity in High-Capacity Oxides for Next Generation Li-Ion Batteries
Rechargeable Li-ion batteries with higher energy density are in urgent demand to address the global challenge of energy storage. In comparison with anode materials, the relatively low capacity of cathode oxides, which exhibit classical cationic redox activity, has become one of the major bottlenecks to reach higher energy density. Recently, anionic activity, such as oxygen redox reaction, has b...
متن کاملElectrochemical Preparation and Characterization of Mn5O8 Nanostructures
Electrochemical synthesis followed by heat-treatment is a facile and easy method for preparation of nanostructured metal oxides. Herein we report nanostructured Mn5O8 prepared through pulse cathodic deposition followed by heat-treatment for the first time. For the preparation of Mn5O8 nanorods, pulse cathodic electrodeposition was first done from 0.005M Mn(NO3)2 at the current density of 5 mA c...
متن کاملTuning Redox Transitions via Inductive Effect in Metal Oxides and Complexes, and Implications in Oxygen Electrocatalysis
Context & Scale This review aims to bridge the fields of inorganic molecular chemistry, electrocatalysis, lithium-ion batteries, and chemical physics of oxides by introducing a unifying concept linking the electronic structures and electrochemical properties of transition metal oxides and complexes. In this work, by reviewing broad literature on the redox behavior of a number of Ni, Co, Fe, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Accounts of chemical research
دوره 46 5 شماره
صفحات -
تاریخ انتشار 2013